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The probability of first return to the initial interval x and the diffusion tensor 
D~a are calculated exactly for a ballistic Lorentz gas on a Bethe lattice or Cayley 
tree. It consists of a moving particle and a fixed array of scatterers, located at 
the nodes, and the lengths of the intervals between scatterers are determined by 
a geometric distribution. The same values for x and D=a apply also to a regular 
space lattice with a fraction p of sites occupied by a scatterer in the limit of a 
small concentration of scatterers. If backscattering occurs, the results are very 
different from the Boltzmann approximation. The theory is applied to different 
types of lattices and different types of scatterers having rotational or mirror 
symmetries. 

KEY WORDS: Diffusion on Cayley trees; lattice gas automata; low-density 
transport coefficient; breakdown of Boltzmann approximation. 

1. I N T R O D U C T I O N  

Diffusion is the s implest  nonequ i l ib r ium p h e n o m e n o n  in spa t i a l ly  non-  
uniform systems, and  the Loren tz  gas ~1'2) is one  of  the s imples t  mode l s  to 
describe this phenomenon .  It  consists  of  a single m o v i n g  par t ic le ,  which 
collides with r a n d o m l y  p laced  scatterers.  The  m o d e l  has a lways  served as 
an  impor t an t  too l  in developing  and  test ing new theor ies  of  nonequ i l i b r ium 
fluids, such as the  der iva t ion  of  the equa t ions  of  fluid dynamics  a n d  diffu- 
sion, general ized kinet ic  equat ions ,  the ca lcu la t ion  of  t r a n s p o r t  coefficients 
as a function of  the  densi ty  of  scat terers  p, a n d  the s tudy of  l ong - t ime  tails 
of  G r e e n - K u b o  t ime cor re la t ion  functions,  such as the veloci ty  co r re la t ion  
function. (3-67 
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It is therefore not a surprise that Lorentz gases are also playing an 
important role in the current development and understanding of cellular 
automata fluids. We refer to the calculation of transport coefficients, (7-~3) 
the study of long-time tails, (~4-~6) anomalous diffusion,(aT-~9) and recurrence 
times.(2o) 

It appears that diffusion phenomena in lattice models are frequently 
anomalous and in general much less universal than in continuum models 
with or without discrete velocities. For instance, the probability distribu- 
tion P(r, t) for the displacementsof the moving particle does not always 
obey a diffusion equation, although its second moment may still be growing 
linearly with time, i.e., ((Ar) 2) ~Dt,  so that the diffusion coefficient D 
would exist. (17) 

Here we want to study another aspect of Lorentz gases on lattices, 
with yet another anomaly. If the scattering rules for the moving particle are 
stochastic and allow the moving particle to retrace part of its trajectory 
(backscattering), then the diffusion coefficient in the limit of small concen- 
tration of scatterers is not given by the Boltzmann equation. In continuous 
systems this effect occurs only in discrete velocity models with back- 
scattering, such as one-dimensional systems. 

The goal of the present paper is an exact calculation of the first return 
probability x and the diffusion coefficient D for a Lorentz gas on a Bethe 
lattice or Cayley tree, which corresponds to the correct low-density limit of 
the corresponding model on a regular space lattice. As it turns out, the 
result is very different from the Boltzmann approximation. The model 
consists of a collection of identical point scatterers placed on the nodal 
points of a random Bethe lattice: each scatterer has b neighbors, located in 
one of b fixed lattice directions with respect to the first one. The distances 
between neighboring scatterers are distributed independently according to 
a geometrical distribution P(1) = p(1 - p)~- 1 with l a positive integer. 
In addition, there is one particle moving at constant speed among the 
scatterers along one of the b lattice directions. It is reflected, transmitted, 
or deflected with certain probabilities at each encounter with a scatterer. If 
the reflection probability fl is vanishing, transport coefficients are exactly 
given by the Boltzmann equation, because the particle never returns to a 
scatterer already visited before. On a Bethe lattice there are no closed 
loops; therefore a particle can only return to a nodal point by reversing its 
steps, allowing for side excursions on the way back, but this is not allowed 
if fl = 0. However, if fl is nonvanishing, the moving particle may return to 
the initial interval. 

The diffusion coefficient for this process can be calculated from the 
Green-Kubo expression by integrating the velocity autocorrelation function 
over time from 0 to oe. The average contributions from intervals between 
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subsequent scatterings (e.g., between the first and the second, between the 
second and the third scattering, etc.) can be calculated separately. It turns 
out that the contributions of all intervals except the one on which the 
particle was located initially are accounted for correctly by the solution 
of the Boltzmann equation. However, the initial interval has an expected 
length that, at low densities, is twice that of the other ones. Consequently 
the particle spends on average a longer time on that interval than on any 
other interval, and there is, apart from the Boltzmann contribution, an 
extra contribution to the diffusion coefficient for every time the moving 
particle returns to the initial interval. Here we shall calculate this extra 
contribution. 

In the previous paragraph we have imposed the restrictions that the 
scatterers are identical and pointlike. Both restrictions are essential for the 
present theory to give the exact low-density limit of a Lorentz gas on a 
regular space lattice. In the literature several models have been considered 
with two or more types of point scatterers, such as random mixtures of 
left and right rotators (21'12) and of left- and right-turning mirrors on 
square(10.13) or triangular lattices. ~11) The theory to be presented here does 
not apply to these random mixtures. In such models not only does the initial 
interval give a contribution, different from the Boltzmann prediction, but 
also each subsequent interval. 

Frenkel etaL ~23~ and Ossendrijver etal. (24~ have also considered 
Lorentz lattice gas cellular automata with identical scatterers of finite size 
with an interaction range extending to nearest neighbor lattice sites. In the 
low-density limit each corner of a scatterer acts as a point scatterer of a 
different type, the above arguments for a mixture of point scatterers apply, 
and no exact low-density results are known. 

As mentioned already, the non-Boltzmann-contribution to the diffu- 
sion coefficient of a Lorentz gas with backscattering, caused by returns to 
the initial interval, is typical for one-dimensional models with continuous 
position variables. (25-2r~ In higher-dimensional models with continuous posi- 
tions and velocities the phase space for backscattering events is negligible at 
low densities. However, in lattice gases the phase space for backscattering 
is a finitefraction of all possibilities, and kinetic theory calculations (9) have 
shown that the contributions from backscattering trajectories renormalize 
the Boltzmann value of the diffusion coefficient, even in the limit of a 
vanishing concentration of scatterers. 

As demonstrated by Ernst et aL, (8) the diffusion coefficient for models 
on Cayley trees is in fact identical to the diffusion coefficient on the corre- 
sponding regular lattice in the limit of small concentration of scatterers 
(p--* 0), but the authors could not carry out a complete evaluation of all 
contributions to the diffusion coefficient in the low-density limit. In any 
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case, the Boltzmann equation cannot be used to calculate the low-density 
value of the diffusion coefficients in models with backscattering. In fact, a// 
collision sequences on a Cayley tree contribute to the same order in density 
as the uncorrelated Boltzmann collisions, whereas all closed loops, or ring 
collisions, not on Cayley trees, contribute only to higher order in the 
density. In ref. 9 only a subset of all trajectories on Cayley trees has been 
resummed, using an effective medium approximation. Nevertheless, the 
approximate transport coefficients obtained with this approximation are in 
excellent agreement with extensive computer simulations. 

The results of the present paper (i) show that the partial resummations 
for the square lattice model of ref. 9 do in fact yield the exact diffusion 
coefficient in the low-density limit, and furthermore (ii) are valid for all 
Lorentz lattice gases with identical point scatterers on arbitrary d-dimen- 
sional lattices with coordination number b. In the high-density limit, where 
all lattice sites are occupied with scatterers, the ballistic Lorentz models 
reduce to random walk models, where the diffusion coefficient is known 
exactly. The Bethe lattice approximation also produces the exact diffusion 
coefficient in the high-density limit. Consequently, as it interpolates 
between two exact limits, it usually provides an excellent approximation for 
all densities. 

2. LATTICE LORENTZ GAS 

We first introduce a Lorentz gas on a regular d-dimensional space 
lattice with lattice distance c. A fraction p of sites, chosen at random, is 
occupied by a scatterer. In addition there is a single moving particle 
located at lattice site r at integer-valued times ( t = 0 ,  1, 2,...). Between the 
times t - 1  and t it has a constant precollision velocity ei ( i=  1, 2 ..... b), 
where {ei} is the set of nearest neighbor lattice vectors with Ici[= c and b 
the coordination number of the lattice. If the moving particle hits a 
scatterer with incoming velocity ej, its outgoing velocity will be e/ with 
probability W U, normalized as ~ i  W 0. = 1. 

The main interest of this paper is the diffusion tensor D=a, where ~, 
/~ . . . . .  {x, y ..... d} denote Cartesian components of tensors or vectors. It is 
given by the Einstein formula 2 

( Ax=( t ) Axa( t ) ) ~ 2D=at (2.1) 

2 It is assumed here that there is no drift in the stationary state. If  in fact there is a drift, one 
has to subtract ( dx=( t ) )  (Axp(t)) on the left-hand side of (2.1). 
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which is for long times and can be transformed into a Green-Kubo 
formula 

D= e = �89 ~ {<v~(t) re(o)) + (vB(t) v~(o)> - (v~vz>} 
t = O  

(2.2) 

where the subtracted term is a consequence of the discrete time variable. 
The fundamental quantity for calculating D is the propagator F/j(r, t), 
defined as the conditional probability that the moving particle is at time t 
in the precollision state {r, el}, given that it was in the precollision state 
{O, es} at the initial time t=O, averaged over the distribution of fixed 
scatterers and over the initial positions of the moving particle, keeping 
its initial velocity c s fixed. It has the property Puff, 0)= ~ij6(r, o), where 
3(r, o) is a d-dimensional Kronecker delta function. The diffusion tensor, as 
given by (2.1), can be expressed as 

D= e = �89 y~ <,(Vo-  %) pjcje + (~ ~ ~) (2.3) 
ij 

The symbol (~ ~ fl) denotes a similar term with ~ and fl interchanged and 
% denotes a Cartesian component of the nearest neighbor lattice vector c~. 
Furthermore, Pi is the equilibrium probability of finding the velocity in 
direction i. It satisfies Z j  WoPj = P~. In the majority of models to be 
considered, all directions are equally probable in the steady state, so that 
pi = 1lb. Finally, the kinetic propagator 

F/j= ~ Z ?,y(r, t) (2.4) 
t = 0  r 

represents the total probability, summed over all sites of the lattice and all 
times (t = 0, 1, 2,...), i.e., summed over all possible trajectories. 

The method for calculating F, to be developed below, also allows us 
to calculate time sums of general correlation functions, with Vx in (2.2) 
replaced by some function of the velocity, Q(v). For example, Q=p(v)= 
v = v p - ( l / d )  v26=~. The resulting expression for the time sum is given by 
(2.3) with ci, replaced by Q;=r Q,~(ci), i.e., 

D O = ~ (Q~,(v(t)) Q,~(v(0))) - �89 
t = 0  

= Z Qi~e(vo - '  ~3,j) pjQj=~ (2.5) 
U 
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3. L O R E N T Z  G A S E S  ON BETHE LATTICES 

From arguments presented in the Introduction, it follows that the 
diffusion tensor on a regular lattice at low densities is given exactly by the 
diffusion tensor of a Bethe lattice or Cayley tree, with the same point 
symmetries and the same type and density of scatterers. The root of the tree 
is the site r = 0, which represents the initial position of the moving particle. 
The branch points of the tree are the scatterers. The intervals between 
scatterers have a length l, determined by the probability distribution 
P(l)=p(1-p) z-1. The average interval length is [ = ~ t  IP(I)= 1/p. The 
moving particle is distributed with equal probabilities over all available 
lattice sites. If we register the position of the moving particle at time t + 
(s~0) (see Fig. 1)), its mean free path [expected length of (OB)] is /, 
whereas the expected length of (OA) is ( [ - 1 ) .  As a consequence, the 
expected length of the interval (AB) on which this particle is found initially 
equals 2 i -  1. To calculate F o we start with models without backscattering, 
where returns of the moving particle to the initial interval are not possible. 
Then the probability Wsy vanishes, where j and f label links respectively 
with the velocities c s and -ey.  The total contribution to (2.4) of all possible 
trajectories without backscattering is 

F a =  [{1 + W +  W2+ ""}0" 

[ 1 

where an obvious matrix notation has been used. The individual terms in 
(3.1) represent the contributions of trajectories with respectively 0, 1, 2 .... 
scatterers. The factor [ accounts for the integration over all possible initial 
configurations of the scatterers, given a fixed initial velocity ey of the 
moving particle. The diffusion tensor in (2.3) is then given by 

D~ .~ v--~5o pycy~+(e ~ ~) (3.2) 

which is the prediction of the Boltzmann equation. 
A A 

-" X ? m~ v 

A 0 z B 
�9 ( F -  1 )  . , F ' 

Fig. 1. Trajectory returning to the initial interval (AB), where a cross denotes the origin 
(r = 0), a dark circle a scattering site, and [= 1/p is the mean free path. 
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Next, the possibility of backscattering will be considered, where 
W~.r In this case the moving particle can return to intervals it has 
visited before. However, with the exception of the initial interval, all these 
intervals still have expected length/-and the probability that after n scat- 
terings the velocity of the moving particle equals ej is (W'~)0 ., irrespective 
of whether all the scatterers encountered were different or not. As a result, 
(3.2) still correctly accounts for the contributions to D from all these 
intervals. The initial interval (AB), on the other hand, has expected length 
2/--1, as mentioned before. 

The average time spent on interval (AB) by the moving particle before 
its first scattering is f, but in subsequent returns this time equals 2/-- 1, as 
illustrated in Fig. 1. Obviously (3.2) accounts for/-of this, but the remaining 
[ - 1  have to be added separately. To do this one needs the probability 
Rij for return to the initial interval with velocity c; of a particle starting 
with velocity cj. The additional contribution to D can then be expressed as 
( [ -  1) F.ij eiRopje j. If X o. denotes the corresponding matrix of first return 
probabilities to the initial interval, then R,j can be expressed as 

R~= { X + X 2 +  -..}/j= {X/(1-X)}~j (3.3) 

and the diffusion tensor is 

=lE 1 2 ij c i = { l @ - f  ( [ - 1 ) X  i - - ' ~  2},7 pjcja + (e~/~) (3.4) 

There is a reduction of the Boltzmann diffusion tensor D o in (3.2), caused 
by returns to the initial interval, i.e., caused by correlated collision sequences 
on the Bethe lattice. The probability of first return will be calculated in 
the next section. The result for Fu in (3.4) can also be applied to the 
expression (2.5) by replacing c,. with Q;. 

4. P R O B A B I L I T Y  OF F IRST  R E T U R N  

On a Cayley tree the first return of the moving particle, if it occurs at 
all, does always occur with a velocity opposite to the initial velocity. Hence 
the elements of the matrix X are of the form 

xo.= x+,~- xjG (4.1) 

where xj is the first return probability (0 ~< xj ~< 1) of a particle starting out 
with velocity ej. Combining (3.3) and (4.1), one finds 

xj xyxj (4.2) 
Ro= l _ x/xjS'J-t l _ xjxjri j  
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J ( )  - 

a 4 • ~ u 
3 

(b) ~ " n 
4 v 
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n 

(c) '  ; m X p-. 3 z w 

3 

Fig. 2. Trajector ies  r e tu rn ing  to the initial interval,  (a) wi thout  and  (b, c) wi th  re turns  to a 
scatterer,  represented  by (n, m)-loops.  The  co r r e spond ing  probabil i ty is X~,,. 

To calculate the first return probabilities xj, we enumerate the trajectories 
contributing to Rj j=  x j ( 1 -  x/xj)  in a different way, as indicated in Fig. 2. 
The trajectory in Fig. 2a contributes Wjj to Rjj; those in Figs. 2b and 2c 
contribute together W/,,,X,,,, Wnj = ( WXW)j j ,  etc. 

Notice that also contributions from return sequences, in which the 
moving particle traverses the initial interval once or several times before 
the final return, are correctly accounted for. The total probability of return 
becomes 

Rj).= {W+ W X W  + W X W X W  + �9 . . } jj 

1 
= { W 1 - x w } / j  (4.3) 

By equating R~/in (4.2) and (4.3), we obtain a set of b coupled algebraic 
equations from which the xj can be solved. For Lorentz gases with high 
symmetry these equations simplify considerably. This will be the subject of 
the next section. 

5. S Y M M E T R I C  LORENTZ GASES 

The results obtained in the previous sections simplify considerably if 
both the lattice and the transition probabilities W o. exhibit rotational sym- 
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metry under appropriate rotations from c~ to ej.. 3 Under these conditions 
the diffusion tensor reduces to a diffusion coefficient times the unit tensor 
and the return probability x becomes independent of the initial velocity ci. 
The b-vector c~x now is an eigenvector of the matrix of transition 
probabilities W u, i.e., Z j  Wucjx = wlc~x, where w 1 is the eigenvalue. The 
Boltzmann diffusion coefficient simplifies to 

D ~  l - w 1  

where the relation ~ c,.2x = bc2/d has been used. The matrix of first return 
probabilities X takes the form 

x u  = x r  ~ = x ~ j  (5.2) 

and the diffusion tensor (3.4) reduces to 

c2{  [, ( [ - 1 ) x  ~} (5.3) 
D=--~- 1 w 1 1 + x  

where the relation Xuc j = -xe i  has been used. 
On lattices with cubic or hexagonal symmetry the b-vector 

Qi = Q=~(e~), as defined above (2.5), is also an eigenvector of both X, with 
eigenvalue + x, and of W, with eigenvalue w2. Consequently the expression 
(3.4) becomes 

, + - -  ( 5 . 4 )  D Q = ~  QiQi 1 w 2 1 - x  

The overall factor Zi  QiQffb depends on the lattice structure and equals 
c4/4 for a square lattice and c4/8 for a triangular lattice. The matrix of total 
return probabilities, as given by (4.2), simplifies to 

x ~  X x 2 

R = l _ x~ = l _ x----~ g + l _--~ l (5.5) 

and the expression (4.3) for Rjj is independent ofj. It can be replaced by 
its average, 

1 1 b 8W "] 1 ~ W  
Rjj= ~ ~ Rjj=~ j~o (. 1 Tr 

�9 

3In fact for the Bethe lattice it is sufficient that (i) Y~j c~=bcZ/d, (ii) Wjj is independent of 
j, and (iii) the number of matrix elements W~j with any given value is the same for each fixed 
i or . /  

822/70/3-4-19 
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where (4.1) and (4.3) have been used to obtain the second equality. By 
equating Rj). in (5.5) and (5.6) we obtain an algebraic equation for x, i.e., 

It simplifies to 

1 - x 2 - ~  Tr 1 - - -~"  (5.7) 

b 1 
1 - x ---'--~ = Tr 1 - xdo--------~" (5.8) 

where the physical solution satisfies 0~<x~<l. Let the b-vectors ~bt 
( l=0 ,  1, 2 , . . . , b - 1 )  with components (~o.( j= 1,2,...,b) be the common 
eigenvectors of W, R, X, d ~ with eigenvalues wt, rt, xt, el, respectively. The 
/-labels are chosen such that W~0 = w0~b0 = ~b0 (normalization of transition 
probabilities) and such that the velocity-inversion matrix do has eigenvalues 
et = ( - 1 )t, so that rl = etx / (1  + etx). Equation (5.8) for x can be expressed 
in terms of eigenvalues as 

b 1 

1 - x 2 - + 1 -- xe twt  

1 ~(+) 1 ~ - )  1 
= + - - +  - -  (5.9) 

1 - x  ~ o  1 - x w  l t l + x w ~  

The superscripts ( + )/( - ) indicate that the/-sums are restricted to the even 
( + )  or odd ( - )  values o f / .  If all eigenvalues are nondegenerate, (5.9) is 
an algebraic equation of degree b. Power counting shows that the degree 
of this polynomial equation is (b + 1), but it always has the solution x = 0. 
In the majority of cases some eigenvalues are degenerate, which lowers the 
degree of the polynomial. 

In Sections 6 and 7 this result will be applied to Lorentz gases on 
lattices with square, triangular, and other symmetries. 

6. ISOTROPIC  SCATTERERS 

6.1. d -Dimensional  Lattices 

As a first application we consider a Lorentz gas defined on a regular 
d-dimensional space lattice with coordination number b and a fraction p of 
the sites occupied by scatterers. We call a scatterer isotropic if the transition 
probability is the same for every outgoing velocity channel, i.e., W,~ = l ib .  
This b • b transition matrix W has one eigenvalue Wo = 1 and a (b - 1 )-fold 
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degenerate eigenvalue wt = 0(l :~ 0). The probability of first return x follows 
directly from (5.9). The result is 

1 
x = ~  (6.1) 

b - 1  

In the isotropic models the diffusion tensor is diagonal, D=r = D~=r and 
the diffusion coefficient D is given by (5.3) with the mean free pa th / -=  1/p 
and reads 

C2[1 1 
p D = - ~  - ~ - p ( ~ - ~ ) ]  (6.2, 

For comparison we also quote the corresponding Boltzmann value in (5.3), 

c2(1  l p )  (6.3) 

Important special cases are isotropic  scatterers on a triangular lattice 
(d = 2, b = 6, c 2 = 1 ) with a diffusion coefficient 

5 1 
pD = 1"~ - "6 p (6.4) 

or on a hypercubie lattice (b=  2d, c2= 1) with 

1 
pD = ~ - 5  [ 2 d -  1 - ( d -  1) p ]  (6.5) 

In particular for scatterers on a line (d = 1, c2=  1 ) this becomes 

pD = �89 (6.6) 

It is exact for all densities (26) and differs substantially from the corre- 
sponding Boltzmann value, pD~ 1 -  �89 In the limit as p--* 0, Eq. (6.2) 
gives the exact value D = ( b -  1)/dbp of the diffusion coefficient, which is 
also quite different from the Boltzmann prediction D ~  1/dp. 

So far our analysis was directed toward a calculation of transport coef- 
ficients in the limit as p--* 0. However, for the above Lorentz models 
another exact result is known, namely the high-density limit (p --, 1), where 
the above Lorentz models reduce to a random walk on a d-dimensional 
lattice with coordination number b with an exact diffusion coefficient 
D = 1/2d. Inspection of (3.4) or (5.3) shows that these equations contain, 
apart from the dominant terms proportional to f, also a density-dependent 
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correction term of relative 60(p). Of course these correction terms do not 
represent the complete (9(p) density correction to the diffusion coefficient 
on a regular lattice. Nevertheless, setting p = 1 in (3.4) or (5.3) does give 
the correct high-density limit. Hence, (6.2) yields the correct high- and low- 
density limits. As it interpolates between two correct limits, the formula is 
expected to yield a rather accurate prediction for all densities. This has 
been confirmed indeed by the computer simulations on the square lattice 
with isotropic scatterers, as shown in Fig. 1 of ref. 9. 

As a small variation on the previous models one may exclude forward 
scattering, i.e., W~.=0, and keep all remaining outgoing states equally 
likely, so that W o . = l / ( b - 1  ) for i r  There is then a nondegenerate 
eigenvalue Wo= 1, and a ( b - 1 ) - f o l d  degenerate wz= - 1 / ( b - 1 )  for l r  
Equation (5.8) for the probability of first return simplifies to 

x2 + ( b -  1 ) ( b - 2 ) x - b +  1 = 0  (6.7) 

The diffusion coefficient D is given by (5.3) with w 1 = - 1 / ( b -  1 ) and x the 
positive root  of (6.7). 

6.2. Hypercubic Lattices 

This name refers to the regular lattice with coordination number 
b---2d. The model on the Bethe lattice with the same coordination number 
and with the same symmetry represents the corresponding low-density 
problem. The scattering rules are described by a transmission probability e, 
a reflection probability /~, and a deflection probability 7 for each of the 
remaining 2 ( d -  1) directions. The normalization is 

cz +/~ + 2 ( d -  1) 7 = 1 (6.8) 

The eigenvalues with the corresponding multiplicity are, 

w0= 1 (1 x) 

wl = a - f l  (dx )  (6.9) 

w 2 = o t + f l - 2 V  ( ( d -  1)x)  

Equation (5.9) then reduces to 

2 d - l - x  d - 1  d 
t- - -  ( 6 . 1 0 )  

1 -  x 2 = l - xw2 l + xw~ 

The solution of (6.10) should be inserted in (5.3) to obtain D for general 
cubic lattices. 
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7. S C A T T E R E R S  W I T H  R O T A T I O N A L  S Y M M E T R Y  

7.1. T r iangu la r  La t t ice  

Here a scatterer will rotate the velocity direction of the moving 
particle over an angle nrc/3 with n = 0, 1,..., 5 with probabilities as defined 
in Fig. 3 and normalized as 

~ + f l  + "] R + T L "~- (~ R "gC (~ L = 1 (7.1) 

Let the matrix ~ be the 6-dimensional representation of the clockwise 
rotation over an angle of re/3, where ~o.=~i+l,j .  The matrix of transition 
probabilities for this model reads then 

W =  a l  + / 3 ~  3 + 6R~ + C5L9 5 + yR~ 2 + ~L ~4  (7.2) 

The transition probability W is invariant under inversion, i.e., Wg = g W, 
or under rotations, W ~ ~ "  W~-n.  Consequently Dxy = -Dyx .  In addition, 
D=z is symmetric because of (2.2), hence Dxy=O and D~,z=D6=z. For 
later reference we formulate this in a somewhat more general fashion, 
i.e., for matrices representing rotations over multiples of 2~/b. Let 
Ct ( l=  0, 1, 2,..., b -  1) with components r ( J =  1, 2,..., b) be the eigen- 
vectors of the rotation matrix ~;  then 

( ~ r  = r247 i --- dtr 
d~ = exp( 2l~f/b ) =- 0 ~ (7.3) 

~b 0. = e x p [ 2 l ( j -  1 ) rff/b] = 0 t(s- 17 

where dz are the eigenvalues and 0 = exp(rff/3) = �89 + f x/~), where b = 6 in 
the triangular lattice. The corresponding eigenvalues wt (l = 0, 1,..., 5) can 

7L 5L 

7R ~SR 
Fig. 3. Transition probabilities c~, 6R, ~'R, 3, YL, 6L. 
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be read off from (7.2) and (7.3). For instance, in the symmetric case, where 
~ R = 7 r = " / a n d  f i r  = 6 L = 6, one gets 

w o = l ,  w z = w 4 = ~ + ~ - 7 - 6  

Wz = w 5 = ~ - / ~ - 7 + 6 ,  w3=~- /~  + 2 7 - 2 6  
(7.4) 

The probability of first return follows from (5.9) and becomes in the 
present case 

5 - x  2 2 1 
+ - -  + - -  (7.5) 

1 -  X 2 =  l - x w  2 l + x w  1 l + x w  3 

It reduces to a cubic equation as explained below (5.9), and the physical 
root satisfies 0 <  x < 1. The diffusion tensor D = ~ = D r = ~  in (2.3) is a scalar 
quantity. This follows directly from the fact that cx=�89 and 
Cy = (2f) -1 (~b~-~bs) are both eigenfunctions of the propagator W in (3.4) 
with eigenvalue w~. The diffusion coefficient (5.3) then becomes 

( 1  x p l-@x ) (7.6) 
1 1 l + x  21 D = ~ p  wx 

where x is the physical root of (7.5). The corresponding Boltzmann value 
of the diffusion cc, efficient D O is obtained by setting x = 0 in (7.6). 

In the previous examples the scatterers have rotational as well as 
mirror symmetries. As an illustration, we also consider a simple example of 
scatterers with only rotational symmetry, by setting y L = r z = 0  and 
YR = fir = 7. In that case the eigenvalues of the transition matrix are given 
by 

Wo = 1, w2 = W 4  ~--- ~ "~ f l  - -  ~1 (7.7) 

Wl=W  

The probability of first return is determined by an equation similar to (7.5) 
with 2/(1 + x w l )  replaced by 2~[1/(1 +XWl)], where ~ denotes the real 
part. The diffusion coefficient is given by (7.6) with 1 / (1 -  wl) replaced by 
~ 1 1 / ( 1  - Wl)] .  

7.2. Square  Lat t ice  

Here we consider the square lattice analogs of the models treated in 
the. previous subsection with transition probability ~, reflection probability 
fl, and right and left deflection probabilities 7R and 7L, normalized as 

cr +~,L= 1 (7.8) 
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The matrix of transition probabilities has the form 

W= ~1 +/392 + 7RN + 7L ~3 (7.9) 

where now ~ represents a rotation over re/2. The eigenfunctions and 
eigenvalues are given by (7.3) with 0=exp(rff/2)=f. Consequently, the 
eigenvalues of W are 

Wo= 1, WZ=CZ+fl--VR--yL 

w~ = w~' = ~ - / 3  + f ( r R -  rL) 
(7.10) 

To calculate the diffusion tensor, we observe that cx=l(~l+~b3) and 
Cy= (2f) -1 (~i-~b3) with the eigenfunctions q~t given by (7.3) with 0=L 
The diffusion tensor D=r = Dfi=p is diagonal and D is given by (7.6) with 
1/(1 - Wl) replaced by N[1/(1 - wl)] and x is obtained from the equation 

3 - x  1 1 
- -  + - -  ( 7 . 1 1 )  

1 - x  2 = 2 ~ 1 + x w I  1 - x w  2 

This concludes the applications to different lattice models. 

8. D I S C U S S I O N  

For the diffusion coefficient of a particle moving on a Cayley tree with 
identical stochastic scatterers located at each branch point and a geometric 
distribution of distances between these scatterers an exact expression has 
been obtained. This could be identified with the low-density limit of the dif- 
fusion coefficient for a moving particle on a regular lattice with randomly 
distributed scatterers. The most striking conclusion is that, if backscatter- 
ing is allowed, the Boltzmann equation does not give the correct low- 
density limit. As the model also produces the correct high-density limit 
(all sites occupied by scatterers) for the diffusion coefficient on the regular 
lattice, it usually provides very accurate approximations for intermediate 
densities also. 

The model can easily be extended to the case of correlated scatterers 
by replacing the geometrical distribution of distances between the scatterers 
by the distribution corresponding to the pair correlation function between 
the scatterers. In the low- and high-density limits this will have but 
a marginal effect. However, it may provide useful approximations at 
intermediate densities. 

As mentioned already in the introduction, Ernst and van Velzen (9) 
calculated the diffusion coefficient of a ballistic Lorentz gas on a square 
lattice with stochastic scattering rules by summing a subset (self-consistent 
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ring diagrams) of all moving particle trajectories on Cayley trees. The 
method is in fact an effective medium approximation. Their extensive com- 
puter simulations showed excellent agreement with the EMA results for the 
case of identical point scatterers with stochastic scattering laws. As it turns 
out, the expressions they obtained coincide with the exact expressions we 
derived here. In view of the excellent agreement with computer simulations, 
this is not entirely unexpected. Obviously the trajectories on Cayley trees 
that were left out of their summations do not contribute to the diffusion 
coefficient. It also turned out that the EMA values for the low-density 
diffusion coefficients no longer show excellent, but only approximate 
agreement with computer simulations, as soon as the scattering laws are 
deterministic and/or there are scatterers of different types, (13) or the 
scatterers have a finite size. (23'24) In that case the EMA or ring kinetic 
theory no longer yields the exact diffusion coefficient on a Bethe lattice. 

For lattice Lorentz gases with mixtures of different types of scatterers 
the Bethe lattice approximation still provides the correct low-density limit 
of the diffusion coefficient, but its -!~culation is not so straightforward. If 
the scatterers are sufficiently isotr% :~, it still suffices to compute the return 
probabilities to the initial interval beyond the Boltzmann contribution. 
However, these now depend on the identities of all the other scatterers and 
cannot be calculated simply. Averaging over the random distribution of 
scatterers on the nodes of the Bethe lattice, one obtains a distribution of 
return probabilities. To calculate this distribution, one has to either per- 
form a numerical summation over paths of finite span on the Bethe lattice, 
to obtain an approximative distribution, or solve a nonlinear set of integral 
equations connecting the return probabilities. Work on this is currently in 
progress. 
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